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The  structural  and  electronic  properties  of  semiconductor  ZnSe  are  investigated  by  performing  first
principles  calculations  using  density  functional  theory  (DFT).  The  exchange  correlation  potentials  were
treated  within  the  local  density  approximation  (LDA)  and  the  generalized  gradient  approximation  (GGA)
with the quantum  espresso  package.  We  calculate  the  density  of  state  (DOS),  projected  density  of  state
(PDOS),  phonon  dispersion  frequencies  and  the electron  charge  density.  Also,  the  bulk  modulus  and
its pressure  derivatives  are  determined.  Where  available,  the  calculated  quantities  are  compared  with
known results.  The  electronic  band  structure  revealed  an  occurrence  of  a 2.72  eV band  gap,  while  the
and structure
irst-principles calculations
ensity functional theory
ocal density approximation
eneralized gradient approximation

density  of state  shows  split  peak  at  −2  eV  and  a minor  peak  split  between  8 and  11  eV. We  show  that
from  the  gamma  points,  along  the  high  symmetries  �  →  X  and  � →  L  directions,  there  are  four  dispersion
(OL,  OT,  AL and AT)  mode  curves  which  later  split  into  six  modes  along  the  X  →  �  (2OL,  OT,  2AT,  and
AL),  L  →  X (2OT,  OL,  2AT,  and  AL),  X  →  W  (2OL,  OT,  2AT,  and  AL)  and  W  →  L  (2OT,  OL,  2AT,  and  AL)  direc-
tions.  These  modes  splitting  correspond  to  optical  longitudinal  mode,  optical  transverse  mode,  acoustic
longitudinal  mode  and  acoustic  transverse  mode.

© 2011 Elsevier B.V. All rights reserved.
. Introduction

The technological importance of groups II–VI semiconductor
ompounds and their alloys have attracted more and more atten-
ion is recent time; especially due to their applicability, they found
pplications in optoelectronic devices and detectors [1–5]. ZnSe
zincblende) is a II–VI semiconductor compound with a band gap of
.70 eV [6].  Hence, it has played a prominent role in optoelectronic
evices specifically, in the blue green region of the electromagnetic
pectrum [7–11]. The electronic, transport and magnetic properties
f the semiconductor compound have generated more interest in
ecent time due to the application of the compound in sprintonic
1]. Therefore, a large number of investigations and calculations
f the optical properties, structural and band structure had been

erformed. In the work of Walter and Cohen, the reflectivity spec-
rum and valence charge density of ZnSe was reported along other
emiconductor compounds [12,13]. The empirical pseudopotential
ethod was used by Chelikowsky et al. [14] to study the valence

∗ Corresponding author at: Department of Physics, University of Agriculture, PMB
240, Abeokuta, Nigeria.

E-mail addresses: gadebayo@ictp.it, Adebayo@physics.unaab.edu.ng
G.A. Adebayo).

925-8388/$ – see front matter ©  2011 Elsevier B.V. All rights reserved.
oi:10.1016/j.jallcom.2011.10.039
band density of states (DOS) of zincblende semiconductors and
diamond. The structural and electronic properties of the binary
semiconductor compounds including ZnSe were investigated by
Rabah et al. [15] using FP-LAPW within the local spin density
approximation. The electronic properties of ZnX (X = S, Se, Te) were
reported by Khenata et al. [16] using the full-potential linear aug-
mented plane-wave method plus local orbitals. Also, the tight
binding linear muffin–tin orbital (TB-LMTO) method was  applied
by Gangadharan et al. [17] to investigate the electronic properties
of ZnX semiconductor compounds. Rodriguez et al. [18] used tight
binding scheme to calculate electronic projected bulk band struc-
ture, surface band structure and the wave vector resolved density
of states for II–VI semiconductors, while Cui et al. [19] studied the
energy–volume curves of all the phases of ZnSe using the PP–PW
method. Although, one can find in literature, the various work done
on the electronic structure and band calculations of ZnSe, to the
best of knowledge, this is the first time an attempt has been made
to classify the mode splitting that occurred in this semiconductor
alloy.

The purpose of this work is to present the ground state prop-
erties such as equilibrium lattice parameter, static bulk modulus
(B), first order pressure derivative of the bulk modulus (B′), elec-

tronic structure, density of state, projected density of state and the
phonon dispersion frequency mode splitting of ZnSe semiconduc-
tor compound using density functional theory as implemented in
the quantum espresso package.

dx.doi.org/10.1016/j.jallcom.2011.10.039
http://www.sciencedirect.com/science/journal/09258388
http://www.elsevier.com/locate/jallcom
mailto:gadebayo@ictp.it
mailto:Adebayo@physics.unaab.edu.ng
dx.doi.org/10.1016/j.jallcom.2011.10.039
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. Theory and computational procedure

.1. Total energy and functional

Solving the many-body Schrödinger equation allows to obtained
any properties of a system of N interacting electrons in the exter-

al potential of the nuclei. The Hamiltonian equation is given as:

 (r1, . . . , rNel) = E (r1, . . . , rNel) (2.1.1)

hile the Schrödinger equation is stated below:

 = −
∑
i

h̄2

2M�2
i

+
∑
i

Vext(ri) + e2

2

∑
i /=  j

1
|ri − rj|

(2.1.2)

here ri is the position of electron i, �2
i

indicates the Laplacian
aken with respect to the coordinate ri, while Vext(ri) is the exter-
al potential acting on the electrons and depends parametrically
n the nuclear positions. In finding a numerical solution for the
chrödinger Eq. (2.1.1),  an efficient method is required. Density
unctional theory (DFT) introduced by Hohenberg and Kohn [20]
rovides a one-to-one correspondence between the ground-state
lectronic charge density �(r) and the external potential Vext(r).
herefore, since the external potential determines also the many-
ody wave-function of the ground state, every physical quantity
f the system in its ground state can be expressed as a functional
f the electronic charge density. The ground-state total energy of
he system plays a prominent role in determining properties of a
ystem, this can be expressed as the expectation value of the Hamil-
onian on the ground-state wave-function �0. If we express the
otal energy as a functional of the electronic density then [20,21],

[�(r)] = 〈�0|H|�0〉 = F[�(r)] +
∫

v
Vext(r)�(r)d3r (2.1.3)

here the integral is performed over the whole volume V of the
ystem. In this Eq. (2.1.3),  F[�(r)] is a universal functional of the
ensity and it is given by the expectation value of the kinetic energy
nd of electrostatic electron repulsion terms on the ground state.
he minimization of the functional E[�(r)] with respect to the elec-
ronic density, with the constraint that the number of electrons Nel
s fixed,

v
�(r)d3r = Nel (2.1.4)

ives the ground-state total energy and the electronic density. Kohn
nd Sham (KS) [21] introduced a new functional by mapping the
any-body problem into a non-interacting electrons problem with

he same ground-state electronic density because, the exact form
f the universal functional F[�(r)] is not known. The new functional
an be obtained by recasting the second term in Eq. (2.1.3) to the
orm [20,21]:

[�(r)] = T0[�(r)] + EH + Exc[�(r)] (2.1.5)

here the first term is the kinetic energy of a non-interacting elec-
rons system, the second term is the Hartree-like energy term,
hich accounts for the classical Coulomb interaction of a spa-

ial charge distribution �(r) and the third term represents the
xchange-correlation energy [20,21].  The only really unknown
uantity is the exchange-correlation energy functional and, in prin-
iple, the quality of the solution of the full many-body problem will
e only limited by the quality of the approximation. With this new
xpression for the functional then, the total energy in Eq. (2.1.3)

ecomes:

[�(r)] = 〈�0|H|�0〉 = T0[�(r)] + EH + Exc[�(r)] +
∫

v
Vext(r)�(r)d3r

(2.1.6)
 Compounds 513 (2012) 294– 299 295

In order to account for the exchange-correlation energy
functional in the above equation, we  applied a local density approx-
imation (LDA) and generalized gradient approximation (GGA)
[20,21].

2.2. Equation of state and elastic properties

The thermodynamic equation that described and explained
state of matter under specified physical conditions is known as
equation of state. The equations of state consist of mathemat-
ical relationship between two  or more state functions such as
temperature, pressure and volume. In order to determine the
energy–volume relationship which allows us to obtain the equi-
librium lattice parameter, we adopt the method proposed by
Birch–Murnaghan [22] to fit the data generated by energy–volume
calculations;

�E(V) = E − E0 = BV0

[(
Vn
B′

)
+

(
1

1 − B′

)
+

(
Vn

B′(B′ − 1)

)]
(2.2.1)

where V0 is the equilibrium volume at zero pressure, E0 is the equi-
librium energy and B, B′ are the bulk modulus and its derivative.
Taking the derivative of Eq. (2.2.1) we compute the bulk modulus
and subsequently obtained the derivative of the bulk modulus.

2.3. Density of state

By solving the KS equation for a system at different values of
wave vector k, one can obtained the dispersion relation (k, �kv)
which makes it possible to compute the density of state (DOS)

�(E) =
∑

ı(E − �kv) (2.3.1)

which is defined here as a sum of Dirac delta functions centred at
energy values corresponding to the eigenvalues of the KS equation.
In practice this summation is performed by substituting ı(�) with
a regular and continuous function ı(�) which has the same nor-
malization as ı(�). In this work we  used Gaussian functions with a
spread controlled by a smearing parameter t as given below:

ı(�) =
(

1√
2�t

)
exp −

( �
2t

)2
(2.3.2)

In order to reach a good approximation of the exact limit of
the DOS given in Eq. (2.3.2) and corresponding to the limit t → 0,
a small value of the smearing has to be chosen. However, since
the number of k points needed to converge the DOS  increases very
fast as t decreases, in practical calculations one makes a trade-off
between the desired accuracy (essentially, how much fine struc-
tures can be resolved in the DOS) and the computational cost given
by the number of k points.

2.4. Computational procedure

The theories of first-principles methods are well established
[20–24] and have been applied in the studies of structural
and electronic properties of materials [25–27].  The local den-
sity approximation (LDA) and generalized gradient approximation
(GGA) are used in first-principles total energy calculations by
using plane-wave self-consistent field (PWSCF) method as imple-
mented in the quantum espresso package [28]. Core electrons are
treated explicitly by employing Vanderbilt ultrasoft pseudopoten-

tial as supplied by Perdew–Zunger and non linear core correction
[29–31,33]. The set of irreducible k-points used was generated by
a Monkhorst–Pack scheme [34], while a plane-wave basis set with
an energy cut-off of 30 Ry was  applied.
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important for an understanding of the structure and chemical bond
in crystalline materials. It is also a complementary way  of under-
standing the electronic structure of crystals. The calculated charge
density distribution is shown in Fig. 2, this gives visual nature of
ig. 1. (a) Crystal structure of ZnSe showing Zn atoms at the edges and on the six
attices. (b) The total energy (eV) against calculated values of lattice parameter (a.u

Essentially, our calculations of the electronic band structure
nvolve, a single point self-consistent calculation after which non
elf-consistent 4 × 4 × 4 uniform grid calculations are performed.
owever, in the calculations of the density of states, the occupancy
f the bands is determined using tetrahedra method with an auto-
atic and uniform k-point generations. A two step procedure [28]
as employed in the phonon frequencies calculations by finding

he ground state (both atomic and electronic) configurations and
ubsequently using the density functional perturbation theory. In
rder to get a well converged ground state energy, the Brillouin
one was sampled with 4 × 4 × 4 k-points mesh and to test the accu-
acy of the plane-wave basis set and that of the Vanderbilt ultrasoft
seudopotential, we determined the equilibrium lattice parameter,
ulk modulus and the pressure derivatives of the bulk modulus of
nSe by the standard procedure for computing the total energy for
ifferent lattice constant and fitted these to Murnaghan’s equation
f states [22,28].

. Results and discussion

.1. Structures of zincblende

Structurally, zincblende occurs in different cubic phases and
n particular, ZnSe is face centred with space group F43m. The
ubic symmetry of ZnSe is such that the Zn atoms occupy the
dges and faces positions while the Se atoms allow the crystal to
orm inter-penetrating face centred cubic. The structure therefore
ooks like a two-component diamond structure with no symmetry
nversion (Fig. 1a). In our calculations, we perform an optimiza-
ion of the lattice parameter by energy minimization; different
alues of lattice constants are used to generate corresponding
otal energy values within a given energy cut-off value (30 Ry)
he obtained total energies and lattice constants data are then fit-
ed to the Birch–Murnaghan equation of state [22]. Fig. 1b shows
greement between the present calculations and other reported
alues [19], but with 1.3 and 1.06% deviation from the experimen-
al result of Ref. [35] respectively in the cases of LDA and GGA,

hile in Table 1, we compared our calculated equilibrium lattice
arameter, bulk modulus (B) and the pressure derivative of bulk
odulus (B′) with other reported work [19,35–37].  The deviation

n the lattice parameter with experimental value is typical of first
. The Se atom makes it possible to form two inter-penetrating face centred cubic
 both LDA and GGA. Inset is the LDA and Birch–Murnaghan (BM) fitted values.

principles calculations using LDA and GGA approximations, usually,
the calculated band gap is much smaller than the experimentally
determined one. Therefore, a correction to the LDA was  performed
using quasiparticle energies as reported in [40]. The calculated bulk
modulus (B) and its pressure derivative are in good agreement with
other results found in the literature (as shown in Table 1). There
are about 4.85 and 10.5% deviations from experimental result [35]
with both LDA and GGA. This trend is also observed in the pressure
derivative of the bulk modulus (B′).

3.2. The electronic structure

Electronic structure at the ground state provides among other
things, an important way of understanding the behavior of materi-
als at microscopic level. The (GGA) band structure of ZnSe including
the low-lying states along the high-symmetry points of the BZ is
shown in Fig. 3a, for clarity, the Fermi level has been set to zero.
Clearly, the calculated band gap is 2.72 eV; this is in agreement,
within acceptable error, with other results [19,35].

The charge density is a ground state property of a crystal which is
Fig. 2. The charge density of ZnSe.



B.I. Adetunji et al. / Journal of Alloys and Compounds 513 (2012) 294– 299 297

Table 1
Lattice constant (a), bulk modulus (B) and pressure derivative of bulk modulus (B′) of ZnSe at 0 GPa and 0 K.

Material Parameter Present results Other calculated results Experimental value

ZnSe a (a.u.) 5.594e, 5.728f 5.578a, 5.820b, 5.669c 5.667d

B (GPa) 68.00e, 58.50f 71.84a, 52.92b, 67.6c 64.7d

B′ 4.07e, 3.94f 4.599a, 3.81b, 4.67c 4.77d

a From the FP-LAPW method [36].
b From the NAO + GC method [37].
c From the PP–PW method [19].
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d
s
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t
w
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d Ref. [35].
e LDA.
f GGA results.

hemical bonds found in ZnSe. The result shows spherical charge
ensities around the Zinc ions, but a small bond charge inside the
elenium ion which is an effect of hybridization due to charge shar-
ng by Zinc and Selenium sp orbital.

From the band structure (Fig. 3a), the difference between the
alence band and the conduction band levels is very small (in
erms of energy difference i.e. there are few eV band gaps), this is
n indication that ZnSe possesses semiconductor properties. This
ame trend is observed from the density of state (DOS) (Fig. 3b).
 direct band gap is noticed in the band structure of Fig. 3a. The
otal projected density of state (PDOS) is presented in Fig. 3c along
ith the total density of state (DOS). The projected density of state

ig. 3. (a) The high symmetry directions are from left to right K, W,  X, G, L, W,  X, G. (b) Th
f  (5–14 eV). The Fermi level is located on the vertical line at point zero on the x-axis. (c)
he  x-axis.
gives a clearer picture of the elemental contributions to the elec-
tronic structure of ZnSe. From Fig. 3b and c, the structures in the
DOS are located in the energy range −4 and 14 eV, with a domi-
nant structure having a split peak appearing at −2 eV and a minor
peak split between 8 and 11 eV (in Fig. 3b). We  expect the split
in this region to correspond to a spin–orbit split with a value cor-
responding to the energy value between two  transitions [38]. In
addition, inset (Fig. 3b) is transitions in the energy range 5 and
14 eV with lightly populated energy states. The projected density of

state (PDOS) is computed based on the dispersion relation and the
pseudo-wavefunctions of the eigenstates of the KS equation. PDOS
is the density of state projected onto the atomic wavefunction, it

e density of state for ZnSe. Inset shows the density of state within the energy range
 The projected density of state of ZnSe, the Fermi level has been shifted to zero on
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Fig. 4. phonon dispersion frequenc

ives a clearer picture of the elemental contributions to the elec-
ronic structure as shown in Fig. 3c. At around −4 eV, pre-peaks are
oticed in the Zn-3d, Zn-4s and Se-4p orbitals with the 4p orbitals
aving higher PDOS value, between −3 and −2 eV, only the Se-4s
nd Se-4p orbitals have pre-peaks. However, in this energy range,
he Zn-3d has a depression of magnitude 0.00944 eV. At −2 eV,

 split peak is seen in the Zn-3d orbital. The peaks between the
ermi level and 14 eV (Fermi level is shifted to zero) are due to the
n-4s and Se-4p orbitals. Hence, due to hybridization, both Zn-4s
nd Se-4p states contribute more to conduction band as shown in
ig. 3c.

.3. Phonon frequency

Phonon study is important in solid state physics and materi-
ls science because, it gives a clear understanding of the physical
roperties of materials such as the thermal expansion coeffi-
ients, electrical conductivities, Debye temperature, specific heat,
lectron–phonon interactions, etc. The frequency of vibration is a
unction of wave vector k, which can be written with the disper-
ion relation as ω(k) = 
ωj(k). In the zincblende ZnSe crystal lattice,
here are two atoms per unit cell, which resulted into six branches of
ispersion curves. Due to translational symmetry, ωj (k + G) = ωj(k)
hen, only phonon frequencies in the first Brillouin Zone can be
alculated. Along some high symmetry points, we are able to cal-
ulate the phonon dispersion curves for ZnSe as shown in Fig. 4.
ur calculation is in good agreement with for example Ref. [32].
he present calculations show that from the gamma  points, along
he high symmetries � → X and � → L directions, there are four
ranches of dispersion curves which later split into six branches
long the X → L, L → X and X → W directions.

By differentiating the phonon frequencies into four modes via
coustic longitudinal mode (AL), acoustic transverse mode (AT),
ptical longitudinal mode (OL) and optical transverse mode (OT)

t the BZ boundary, it is possible to characterize the high symme-
ry directions and identify which split corresponds to any of the

odes. In the optical branch, identifying the transverse mode or
ongitudinal mode is difficult except one put into consideration the
ng high-symmetry Brillouin Zone.

mass ratio of the constituent atoms and their ionicity [38]. On  the
other hand, in the acoustic branch such difficulty does not exist
because, the transverse frequency is smaller than the longitudinal
frequency except at zone centres where both modes have zero fre-
quency. The argument put forward by Mitra in Ref. [38] will be
very helpful to classify the splits: In elemental crystals, the optical
branch degenerate at the zone centres with the transverse optical
phonon having higher energies than the longitudinal modes at or
near the zone boundary. For compounds with low ionicity at the
zone centre, the OL mode has higher frequency than the OT mode
while near the zone boundary, the OT is at higher frequency than
the OL mode [38,39].

From Fig. 4 and using the above notations, we see that in the
directions � → X and � → L the optical and acoustic branches both
split into transverse and longitudinal modes while in the X → �,
L → X, X → W and W → L directions there are “mode splitting. “Fur-
thermore, the curve above 7 THz is an OL mode while the curve
above 6 THz is an OT mode. Similarly, the curve above 2.5 THz is an
AT mode while the curve above 5 THz is an AL mode. In the “mode
splitting” regimes, the AT mode splits into two separate AT modes
leading to 2AT + 1AL (3 modes). The optical branch is character-
ized by splitting of both the OL and OT modes in these regimes. For
example, in the regime X → �, there are 2OL + 1OT (3 modes), in the
regime L → X, there are 2OT + 1OL (3 modes), in the regime X → W,
there are 2OL + 1OT (3 modes) and lastly, in the W → L regime, there
are 2OT + 1OL (3 modes).

4. Conclusions

In summary, we  have calculated by first-principles ab initio
method, the electronic lattice parameter, charge density, band
structure, density of state and projected density of state of ZnSe.
Our calculated optimized lattice parameters of 5.594 (LDA) and
5.728 (GGA) a.u. is in close agreement with experimental and other

calculated results available for this system. The calculated struc-
tural properties are in good agreement with available results. Also,
this work revealed that ZnSe has direct band gap of 2.72 eV. Fur-
thermore, we  have reported the calculation of phonon dispersion
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requency for ZnSe using linear response theory method, making it
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our or six dispersion modes. And lastly, this work revealed the type
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